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Abstract Body 
 

Background / Context:  
 Policy-makers are frequently interested in understanding how effective a particular 
intervention may be for a specific (and often broad) population.  In many fields, particularly 
education and social welfare, the ideal form of these evaluations is a large-scale randomized 
experiment. The fact that sites or units within sites are randomly assigned to different 
interventions (or a control group) allows the causal impact of an intervention to be assessed 
without bias. However, recent research has highlighted that sites in these large-scale experiments 
are typically not randomly sampled from the population, making generalizations difficult (Olsen, 
Orr, Bell, & Stuart, 2013). For example, Stuart, Cole, Bradshaw and Leaf (2011) and Olsen et al. 
(2013) provide methods for assessing the similarity between samples and populations, while 
Hedges & O’Muircheartaigh (2011) and Tipton (2013) develop methods for adjusting for 
differences between the achieved sample and the population. All of these approaches extend the 
propensity score methodologies (Rosenbaum & Rubin, 1983; 1984) originally developed for 
observational studies (where causality is at issue) to the problem of generalization. 
 
Purpose / Objective / Research Question / Focus of Study: 
 A problem not addressed by this literature is the effect of small sample sizes in 
generalization. For example, multi-site experiments can have as few as 10 – 15 sites*, while 
“large-scale” cluster randomized experiments typically have fewer than 70 sites. In contrast, the 
inference population is typically much larger – often over 100 times larger. In this paper, we 
address three questions regarding the effect of these small sample sizes on: 1) assessments of 
generalizability; 2) rules of thumb for covariate balance; and 3) properties of estimators and 
estimation strategies. We investigate these issues in relation to sample sizes that vary from 30 to 
70 clusters and on studies that are cluster-randomized or multi-site (random block) in design.  
 
Significance / Novelty of study: 
 To date, the literature on generalization has not addressed the implications of small 
sample sizes on propensity score methods.  
 
Statistical, Measurement, or Econometric Model:  
 Stuart et al (2011) and Tipton (2013) outline the assumptions necessary for generalization 
and situate these assumptions in relation to the propensity score literature. These methods require 
that a population frame can be developed that includes a list of all units (e.g. schools) in a well-
defined population, as well as those units in the experiment. This frame also needs to include all 
covariates that explain variability in site-average treatment effects (the sampling ignorability 
condition). In order to make these comparisons, a sampling propensity score is estimated using a 
logistic regression model. If the sample selection is strongly ignorable (see Tipton, 2013) then an 
unbiased estimate of the population average treatment effect is possible. When it is not met, the 
goal is to provide an estimate with less bias than the sample average treatment effect typically 
calculated in experiments.  

                                                
* In the final paper, we will also report results including studies using multi-site (randomized 
block) designs.  In this abstract we describe the study designed to simulate cluster randomized 
trials randomizing schools to treatments.   
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Assessments of generalizability: RE-logistic  
 The sampling propensity score can be used to assess the similarity between a sample and 
population. Stuart et al (2011) argue that two statistics are often of interest, the absolute 
standardized mean difference (|SMD|) of the estimated propensity score logits and the difference 
in estimated propensity scores in the two groups. Importantly, these measures of assessment 
depend directly on estimates provided by a logistic regression model. In small enough samples, 
however, logistic regression is known to produce biased estimates of both the coefficients (βj) 
and the associated probabilities. This rare-events problem arises when the number of 1’s (here 
sample units) is small relative to the number of 0’s (here population units). Various solutions 
have been proposed for reducing this bias, including the use of rare-events logistic regression 
(RE-), a profile-likelihood method proposed by King and Zeng (2001). In this paper, we compare 
results from RE- and standard- logistic regression to determine if and when these small sample 
corrections matter. 
 
Assessments of generalizability: Balance  
 An additional concern, also of found in assessing generalizability is in the determination 
of rules of thumb. In the ideal, a sample would be a miniature of the population, though what 
counts as “miniature” is not clearly defined. In observational studies, rules of thumb for 
similarity (i.e., balance) have been proposed; the most common of these include either |SMD| < 
0.25 or |SMD| < 0.10. Here, balance is typically assessed not only in terms of the |SMD| of the 
logits, but also in terms of the underlying covariates (i.e., X1, X2, …, Xp), with the goal being to 
minimize the SMD for all of these. An important question, therefore, is if these rules of thumb 
are reasonable in generalization. 
 
Post-hoc adjustments: Estimation methods  
 In many instances, researchers are not only interested in assessing generalizability but 
also in creating a better estimator of the average treatment effect. These methods use propensity 
score estimators for reweighting, including the post-stratification or subclassification estimator 
(Tipton, 2013; Hedges & O’Muircheartaigh, 2011), 
 Tsub = ΣwpjTj. 
In this estimator, the distribution of estimated propensity scores in the population is divided into 
k equal sizes, each with wpj = 1/kth of the population. Within each of these k strata, a separate 
treatment effect (Tj) is estimated, based on the nj sample units that fall within the stratum. One 
question is to what degree post-stratification is useful in small samples and if better results could 
be gleaned through use of other methods, such as inverse-probability-weighting (IPW), defined 
as  
 TIPW = ΣYiT/s(Xi) – ΣYiC/s(Xi). 
This can be viewed as the limit of the post-stratification estimator, where each stratum contains 
only one school. 
 
Research Design: 
 In this paper, we situate our investigation of small samples in generalization in relation to 
a particular example. The data we examine were drawn from a cluster randomized controlled 
trial (Konstantopoulos, Miller, & Van der Ploeg, 2013) that was designed to study the effect of 
Indiana’s benchmark assessment system on student achievement in mathematics and English 
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Language Arts (ELA) base on annual Indiana Statewide Testing for Educational Progress-Plus 
(ISTEP+) scores. Fifty-six K-8 schools volunteered to implement the system in the 2009-10 
school year. Of these, 34 were randomly assigned to the state’s benchmark assessment system 
while 22 served as controls.  
 Data from the experiment were supplemented by data on all of the other K-8 schools in 
the state of Indiana, which were used to define the inference population. The original Indiana 
dataset was truncated so that there were no charter schools nor any schools whose proportion of 
free reduced priced lunch, male, special education and limited English proficiency exceeded 
95%.  Schools whose enrollment were fewer than 100 students were also removed. This resulted 
in a population frame of 1514 schools. The locations of the 56 experimental and 1514 population 
schools are indicated in Figure 1. Initial analyses revealed several problems when using the 
subclassification or IPW approaches to generalize, including a limited number of strata, and 
SMDs outside the standard rules of thumb.  
 To examine these issues, using the population frame of 1514 schools, we conducted a 
simulation study to understand the relationship between sample size and propensity score 
estimation method (logistic vs. RE-logistic), degree of similarity/balance, and the effectiveness 
of various estimation strategies. To develop these adjustments and rules of thumb, we drew 
random samples of n (= 30, 50, 70) schools out of these 1514 schools.  For each simulation, we 
included 1,000 iterations. We focused on random sampling since it is the ideal site selection 
method, in terms of both simplicity and bias.  
 In each repetition, after randomly selecting n schools, half of the schools were assigned to 
receive treatment and half were assigned to receive control. Next, a single propensity score 
model was estimated using both RE- and standard-logistic regression with fifteen covariates; 
these covariates were selected to achieve the ignorability condition and are listed in the first 
column of Table 1. For each iteration, we calculated the |SMD| between the sample and 
population for each of the 15 covariates, as well as the associated logits and RE-logits. For each 
of the sample sizes, across the 1,000 simulations, we calculated the value such that 95% of the 
|SMD|s were less than this value. This allowed us to answer our first two questions regarding 
assessment and rules of thumb. 
 Once these propensity scores were estimated, in each iteration, the logit and RE-logit of 
the propensity scores were used to stratify the population into three, four and five strata, and then 
post-stratification and IPW balance were assessed, using the Tsub estimator given above. For each 
covariate, the |SMD| was calculated.  
 
Findings / Results:  
 Based on these simulation results (as well as analytic work included in the paper, but not 
here), we have three important findings with implications for practice. 
 
Assessments of generalizability: RE-logistic  
 In all three sample sizes studied here, the |SMD| for the RE-logits were typically much 
smaller than those for the logits, and more importantly, were in line with the |SMD|s for the 
individual covariates. The differences were largest for n = 30, and decreased with sample size. 
This is an important finding: as a measure of assessment, in small samples the SMD of logits 
makes samples appear less similar to a population than they actually are. For example, with a 
sample of size n = 30, on average the |SMD| of the RE-logits is 0.14, versus 0.64 for the logits. 
These comparisons can be seen at the bottom of Table 1. 
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Assessments of generalizability: Balance  
 The second finding, illustrated in Table 1, is that the degree of imbalance between a 
sample and population is much larger under random-sampling than would be expected by the 
rules of thumb commonly in place in propensity score methods. For example, when n = 30, on 
average the |SMD| is roughly 0.15 and in 5% of samples, the |SMD| can be greater than 0.35. 
Even with samples as large as n = 70, on average the |SMD| is 0.10, with 5% of samples having 
values greater than 0.23. This means that the rule of thumbs for assessing similarity in 
generalization need to be larger, with |SMD| < 0.25 being the most stringent of these 
requirements, not the least.  
  
Post-hoc adjustments: Estimation methods 
 In our previous experience, small sample sizes often limit the number of equal-
populations strata possible in generalization. The results of this simulation study indicate that this 
problem is also likely to arise simply by change in random samples. In Table 2, for a sample size 
of n = 30 (the paper will include n = 50, 70) we indicate the proportions of samples (out of 
1,000) in which there were enough schools in each of 3, 4, or 5 strata for estimation of a 
treatment impact in each stratum. We investigated this using RE-logit as well as logistic 
regression, and for both cluster-randomized designs (in which at least 1 treatment and 1 control 
site was required in each stratum) and multi-site designs (in which only 1 site is required per 
stratum).  
 Here there are two main results. First, using RE-logistic regression versus logistic 
regression greatly improves the ability to use post-stratification. For example, in a cluster-
randomized design, under random sampling three strata would be possible for post-stratification 
in only 80.1% of samples using logistic regression, but 99.5% using RE-logit. Second, even 
using RE-logit, the use of five strata – the standard in the post-stratification literature – is not 
possible in over 30% of samples. This unfortunately suggests that in cases in which balance is 
not good, there are limitations to all post-hoc approaches. 
 In addition, we also investigate the performance of IPW relative to post-stratification, 
particularly in cases in which the maximum number of strata is small (e.g., 3, 4). (We include 
these results in the full paper, but do not discuss them here.) 
 
Usefulness / Applicability of Method:  
 After the simulation study, we return to the Indiana example and apply our findings. In 
Table 3 we first compare baseline differences between the sample and population, as well as 
remaining differences after post-hoc adjustments with different estimators. At baseline, if we use 
the standard |SMD| < 0.10 rule, only 5 out of the 15 covariates meet this assessment of similarity; 
however, if we use the |SMD| < 0.28 rule developed in Table 1, instead 10/15 of the covariates 
can be considered balanced. Using IPW increases this balance, as does sub-classification. In the 
paper, we further discuss similarities and differences between these results.  
 
Conclusions:  
 Propensity score matching methods can be used to improve generalizability of findings 
from randomized experiments with non-probability samples, but adjustments and new rules of 
thumb are necessary in the application of these methods in this context.  
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Appendix B. Tables and Figures 
 

Figure 1: Map of Indiana experimental & population schools 

 
 
 
 
 Table 1: Empirical sampling distribution of |SMD| by sample size 
 
  

Covariates 
n=30 n=50 n=70 

|SMD| 95% Rule |SMD| 95% Rule |SMD| 95% Rule 
English Language Arts 

Test 0.15 0.36 0.11 0.27 0.10 0.24 
Math Test 0.15 0.37 0.11 0.28 0.10 0.24 

Attendance 0.14 0.35 0.11 0.28 0.09 0.23 
FTE 0.15 0.37 0.11 0.28 0.10 0.24 

Enrollment 0.14 0.36 0.11 0.29 0.10 0.24 
Pupil Teacher Ratio 0.15 0.34 0.11 0.28 0.09 0.23 

Couny Population 0.14 0.34 0.12 0.27 0.09 0.22 
Title I (proportion) 0.15 0.38 0.11 0.28 0.09 0.24 

Student Title I (proportion) 0.15 0.33 0.11 0.28 0.09 0.23 
Male 0.14 0.36 0.11 0.27 0.09 0.22 

White 0.15 0.36 0.12 0.26 0.09 0.22 
Special Education 0.14 0.36 0.11 0.27 0.09 0.23 

Free/Reduced Lunch 0.15 0.35 0.12 0.27 0.09 0.22 
ELL/LEP 0.15 0.37 0.12 0.28 0.09 0.23 

logits 0.64 0.86 0.5 0.66 0.43 0.57 
RE-logits 0.14 0.34 ** **  **   ** 

 Note: All covariate values come from 2008, while the intervention occurred the following  year. 
 Importantly, the outcome in the experiment was the ELA test (first item in the list) in the following year. RE-
 logits result from a rare-events logistic regression model. Those items marked ** will be included in the 
 final paper but are not yet available. 
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Table 2: Number of equal-population strata possible in random samples (n=30) 

 
CRT (#T>0, #C>0) RBD (# > 0) 

Number of Strata Logits RE-logits Logits RE-logits 
3 0.801 0.995 0.997 1.000 
4 0.498 0.896 0.958 1.000 
5 0.214 0.697 0.874 0.997 

Note: In the Cluster Randomized Trial (CRT) design, at least one treatment and one control school had to 
be available in each stratum, while in the Random Block Design (RBD) or multi-site trial, only one school 
needed to be in each stratum. RE-logits result from a rare-events logistic regression model 

 
 
 Table 3: Indiana example comparison of |SMD| for different estimators  

Covariates Baseline IPW 
3 Strata Sub 3 Strata Sub 

Logits RE-Logits 
English Language Arts Test 0.438 0.249 0.174 0.155 

 Math Test 0.032 0.123 0.092 0.098 
Attendance 0.068 0.279 0.249 0.253 

FTE 0.348 0.23 0.16 0.167 
Enrollment 0.271 0.173 0.172 0.168 

Pupil Teacher Ratio 0.219 0.184 0.05 0.062 
Couny Population 0.439 0.374 0.252 0.251 

Title I (proportion) 0.146 0.219 0.216 0.29 
Student Title I (proportion) 0.073 0.166 0.07 0.056 

Male 0.013 0.225 0.357 0.361 
White 0.292 0.175 0.19 0.209 

Special Education 0.181 0.179 0.381 0.347 
Free/Reduced Lunch 0.027 0.109 0.144 0.174 

ELL/LEP 0.32 0.459 0.424 0.463 
logits 0.753 -- 0.156 -- 

RE-logits 0.762 -- -- 0.173 
 

Note: The experiment included 54 schools out of 1514 in the inference population. In both the logistic and 
RE-logistic regression subclassification, there were three strata (each with 1/3 of the population) with 38, 
14, and 2 schools respectively (though the particular schools in each stratum differed). Bolded values are 
those greater than the 95% critical value (0.28), based on the simulations study.RE-logits result from a 
rare-events logistic regression model 


